

CASE STUDIES IN GNSS/INS INTEGRATION

Tuesday, December 15, 2015

WELCOME TO Case Studies in GNSS/INS Integration

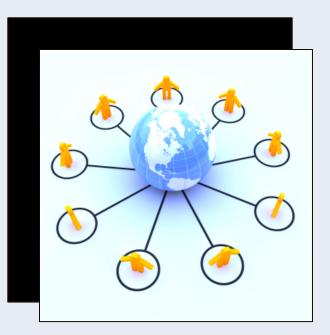
Tom Jakel Senior Systems Engineer Honeywell Aerospace

Andrey Soloviev Principal QuNav

Co-Moderator: Lori Dearman, Sr. Webinar Producer

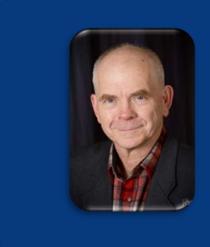
Who's In the Audience?

A diverse audience of over 500 professionals registered from 43 countries, 30 states and provinces representing the following industries:


23% System Integrator

19% Product/Application Designer

18% Professional User


15% GNSS Equipment Manufacturer

25% Other

Welcome from Inside GNSS

Glen Gibbons

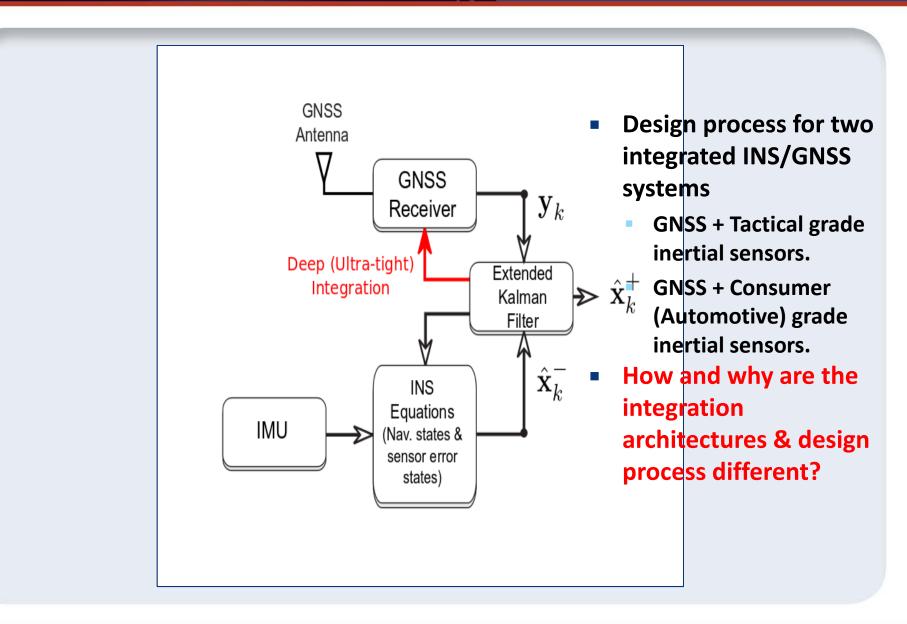
Editor and Publisher Inside GNSS

Welcome from NovAtel

Sheena Dixon Product Manager NovAtel

Case Studies in GNSS/INS Integration

Demoz Gebre-Egziabher Aerospace Engineer and Mechanics Faculty University of Minnesota



Poll #1

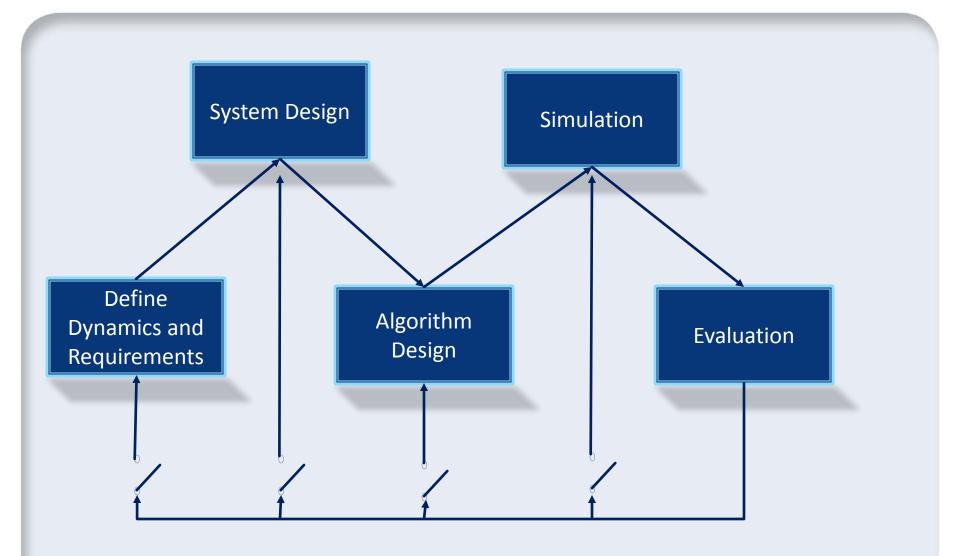
Which of the following are true of design requirements for an integrated GNSS/INS system? *(Please select all that apply)*

- For a given hardware (GPS receiver and IMU) are independent of the application
- For a given application are independent of the hardware used
- Are "cast in stone" and never change once the design process starts
- May be determined iteratively as the design process evolves.
- All are true

INS/GPS Integration In High Dynamic Environments

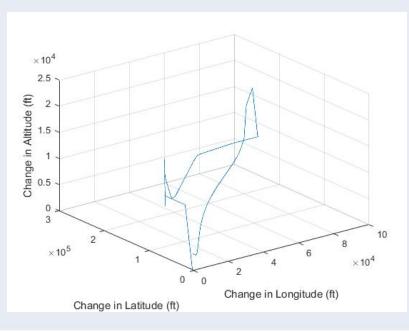
Modular System Design for a Range of High Dynamic Applications

Thomas Jakel Sr. Systems Engineer Honeywell Sensor Guidance and Navigation COE



•Produce an integrated inertial navigation system architecture which:

- 1) Is adaptable to various high dynamic applications
- 2) Minimizes free inertial drift during GPS outages
- 3) Is configurable to use various inertial measurement unit and GNSS types



Trajectory

Time history of 6 Degree of Freedom Motion

Inertial Forces

- Strapdown Navigation means sensors experience motion of the body with some attenuation due to mounting
- Specific force modeling fidelity tactical vs. navigation
- Transport Rate
- High frequency dynamics
 - Vibration
 - Shock

Define Requirements

SWAPC

- Size, Weight, Power and Cost
- Dynamic Range and Bandwidth
 - Driven by platform dynamics
- Performance
 - Navigation Performance (Position, Velocity, and Attitude)
 - Circular Error Probability or Segment RMS Error

Performance

- Inertial
- Measurement (GNSS)
- Other Considerations
 - Reliability, Technology Readiness, and Ease of Adoption

Select Candidate IMUs

	HG1930	HG1900	HG1700	HG9900
Volume (in ³)	5	17	27	103
ARW (°/√hr)	0.09	0.06	0.125	<0.002
G_Bias (°/hr)	20	10	1	<0.003
G_BI (°/hr)	1.0	0.3	0.03	N/A
G_SF (ppm)	600	150	150	5
G_NO (µrad)	500	200	100	
A_Bias (mg)	5	1	1	<0.025
A_BI (mg)	0.3	0.05	0.05	<0.025
A_SF (ppm)	450	150	300	100
A_NO (µrad)	500	100	100	
Start Time (ms)	350	750	1500	
VRC (ug/g²)	40	17	17	
Power (W)	2.6	3.5	6.5	<10

IMU Selection

- The HG1930 MEMS IMU has been successfully deployed on a wide range of guidance, navigation, control, and pointing applications on commercial and military platforms
- Extended operating range versions available
- Specified performance is over all environments – many of which are severe
 - Performance under benign conditions is even better
- Gyro rate limited ECCN 7A994 version
 - Entry in service late 2016

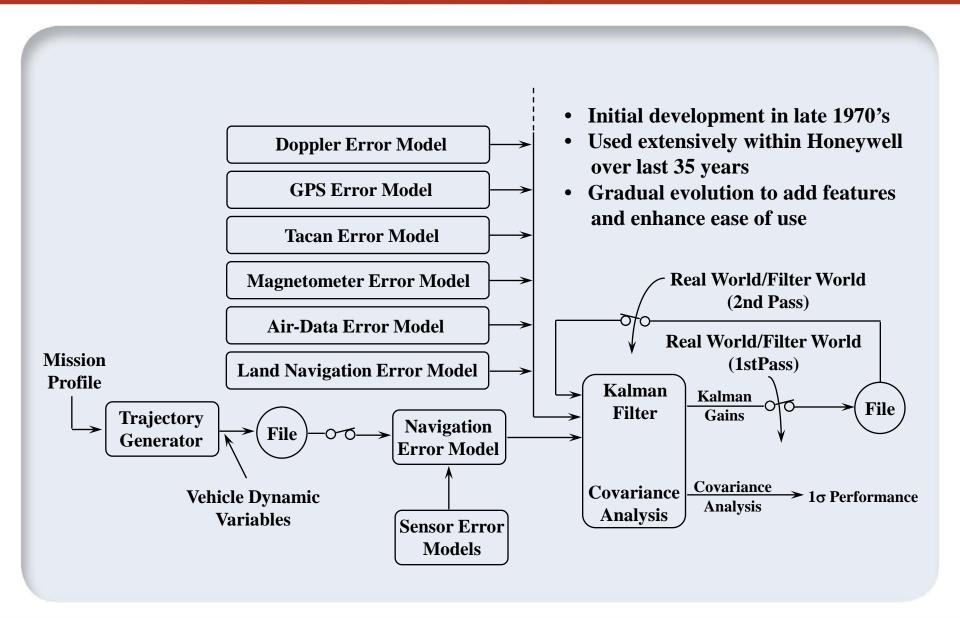
HG1930	CA50	BA50	AA50	
Physical Parameters				
Volume (cubic inches)	< 5			
Weight (lbs)	< 0.35			
Power (Watts)	< 3			
Gyro Performance Overview				
Operating Range (dps)	1000			
Bias Repeatability	20	40	60	
(dph (1-sigma))				
Bias In-run Stability	1	1.5	1.5	
(dph (1-sigma))				
Scale Factor Repeatability	600	800	1000	
(PPM (1-sigma))				
Scale Factor In-run Stability	250			
(PPM (1-sigma))		-		
Non-orthogonality	500	750	750	
(urad (1-sigma))				
Angle Random Walk	0.125	0.125	0.175	
(deg/sqrt(hr))				
Accelerometer Performance Overview	•			
Operating Range (g's)	30			
Bias Repeatibility	5	10	10	
(milli-g (1 sigma))				
Bias In-run Stability	0.3	0.5	0.5	
(milli-g (1 sigma))				
Scale Factor Repeatability	750	1000	1000	
(PPM (1-sigma))				
Scale Factor In-run Stability	150			
(PPM (1-sigma))				
Non-orthogonality	500	750	750	
(urad (1-sigma))				
Velocity Random Walk	0.3	0.3	0.4	
(fps/sqrt(hr))				

Example Honeywell MEMS sensor technology

Navigation Algorithm Design

- Navigation Architecture centered around Strapdown Navigation and Extended Kalman Filter (EKF)
 - Proven navigation performance in past high dynamic applications
 - State Selection
 - PSI Error Model Direct observation of Earth to Body states
 - Modeling of inertial sensor and measurement errors
 - Dynamics and observation dependent
 - Selectable Navigation Iteration Frequency
 - Modeling of transport rate and gravity
- GNSS measurements can be incorporated with different mechanizations
 - Ultra-Tightly Coupled (UTC) Navigation solution drives the GPS receiver replicas (NCO)
 - Tightly coupled Pseudorange and Deltarange incorporated as measurements to the EKF
 - Loosely coupled Position and Velocity used as measurements in the EKF

- Accept NCO commands from external sources
- Output *Is* and *Qs* at 50 Hz or greater (for signals with nav data on them)
- Bias estimation and application consistent with estimation performed in centralized EKF
- Small SWAP
- Oscillator Stability under dynamic conditions
- Receiver only needs to track the errors in the inertial solution
- Signal acquisition time may not be critical
 - Dependent on performance requirements post initialization

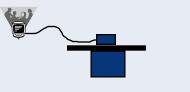

Simulation Tradeoffs

Covariance simulation

- Linear models of error characteristics
 - s = g(x)
- Single run statistical assessment
- Time domain simulation
 - Non-linear models and events
 - y = f(x)
 - Direct visibility to application software implementation
 - Higher-order languages allow actual flight software to be simulated
 - Issue: Simulation is not usable until flight software is complete
 - Sensitive to signs and implementation
 - Monte-carlo provides statistical assessment

- Gyroscope Scale Factor
- Maneuver 180° Roll
- No state in EKF Scale Factor for HG1930 AA50 from <u>Specification</u> 1000 PPM
 - Attitude Error = 1000 PPM * 10^-6 PPM/Part*180° = 0.18°
 - Velocity Error ≈ 0.18°*pi/180 rad/° * 9.81 = 0.03 m/s
- State in EKF Estimated to Scale Factor In-Run from AA50 <u>Specification</u> 250 PPM
 - Attitude Error = 250 PPM * 10^-6 PPM/Part*180° = 0.05°
 - Velocity Error ≈ 0.05°*pi/180 rad/° * 9.81 = 0.01 m/s
- Modeling Gyro Scale Factor State provides significant performance benefit
 - When trajectory excitation and measurement observability allow estimation

- Examples of inertial states modeled
 - Bias, Scale Factor, Repeatable Scale Factor Non-Linearity, Misalignment, Non-Orthogonality, Gyroscope G-Sensitivity
- Examples of GNSS Measurement States
 - Clock Drift, Clock Drift Rate, Range Bias, Oscillator G-Sensitivity
- State selection is a trade-off between performance and processing
 - Observability of states is trajectory dependent

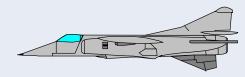

Test Environments

Off-line Simulation Tools

- Filter Design and Analysis
- Provides controlled and repeatable environment.
- Provides "user friendly" tools.
- Output information only as good as input drivers.

Access to actual hardware

controlled environments


- Temperature

VibrationHumidity etc.

and real-time software.

• Offers exposure to

Laboratory Test

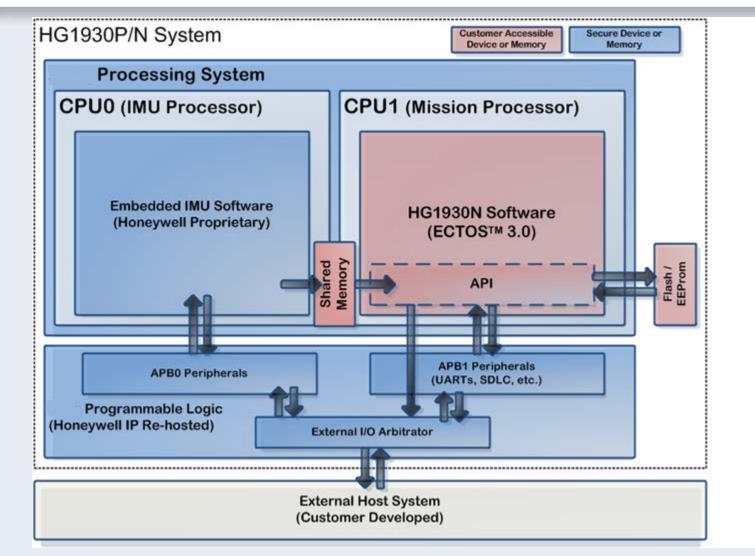
Van Test

- Access to low dynamic motion for visibility into timing errors etc.
- Cheaper than flight test.
 Easy retest capability
- Good data collection/storage.

Flight Test

• True application environment

- Development utilizes all of the above environments
- Results from laboratory, van and flight test are fed back into off-line simulation tools to assist in analysis and provide better tools to use in the future.

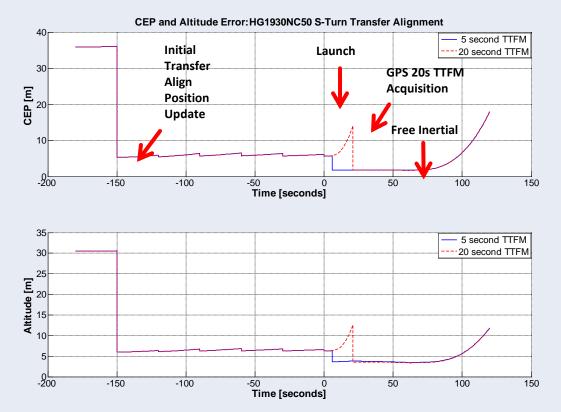


- Two new variants to the HG1930 family
 - HG1930P = Enhanced <u>Processor</u>
 - HG1930N = Integrated <u>N</u>avigator
- Small size, weight and power (SWaP)
 - HG1930 form factor
- Drop-in replacement of the HG1930 micro board
 - Multi-core System-on-Chip (SoC)
 - Secure dual processor architecture
- Flexible I/O options
- Honeywell MEMS sensors
 - Capable of using external IMU

Honeywell's new flexible low cost, small SWaP, MEMS INS

Secure and open INS architecture

- Up to 5 UARTs
 - 4 Mbaud capable useful for low latency NCO commands

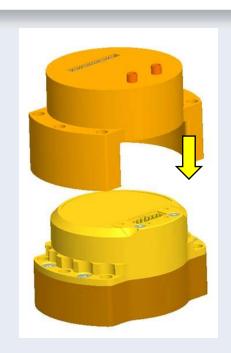

- 14 Pin Connector
- Design decision for volume, commonality of production and cost
- Mitigate limitations with configurability

- SDLC port
- Additional pin options
 - Time Mark Input/Output
 - Discrete Input/Out
 - IMU Strobe/External Sync
- Both single-ended and differential signals supported on ports 3, 4 & 5
- Additional I/O supports varied Navigation usage

• Navigation performance is expected to be similar to the Honeywell BG1930 GPS Aided Inertial Navigation System(INS).

Preliminary simulation analysis shows comparable performance

1 minute free inertial performance: 18 m CEP, 12 m Altitude Error (1o)


Product Roadmap: Future Developments

Top-hat options

- Personality card
- Federated GPSR
- Other aiding sensors
- Tailored for customer applications
- USB On-The-Go software
- Software services via a Platform API
- HG1900 and HG1700

HG1930P/N concept to other Honeywell IMU product families, e.g.,

System architecture supports hardware/software expandability

Takeaways

- INS/GNSS design for dynamic systems is an iterative trajectory dependent process
 - High fidelity simulations provide a low cost means to iterate on the design
- Modeling of inertial sensor error characteristics which are dynamics dependent is critical
- Selection of ultra-tightly coupled integration has significant design impact

References

- Groves, Paul D., Mather, Christopher J., Macaulay, Alex A., "Demonstration of Non-coherent Deep INS/GPS Integration for Optimised Signal-to-noise Performance," *Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007)*, Fort Worth, TX, September 2007, pp. 2627-2638
- Buck, T. M., Wilmot, J., and Cook, M. J. (2006). A high G, MEMS based, deeply integrated, INS/GPS, guidance, navigation and control flight management unit. In Proceedings of IEEE/ION Position Location and Navigation Symposium Conference, San Diego, CA. IEEE/ION

Ask the Experts – Part 1

Tom Jakel Senior Systems Engineer Honeywell Aerospace

Andrey Soloviev Principal QuNav

> Name Title Organization

Poll #2

Which of the following are true about the INS mechanization used in an integrated GNSS/INS system? (Please select all that apply)

- The same for a given application regardless of the quality of IMU used
- The same for a given quality IMU regardless of the application in question
- Always the same for a given quality IMU and GNSS receiver regardless of the application
- Depend on the customer requirements
- None are true

GNSS/Inertial Integration for Land Vehicles

Andrey Soloviev Principal, QuNav

Example Automotive Applications

• Navigation

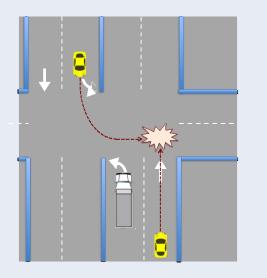
Road-level accuracy

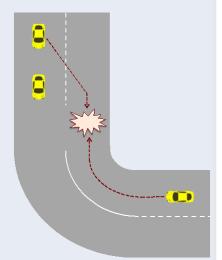
Automotive safety:
 Connected cars

Lane-level accuracy

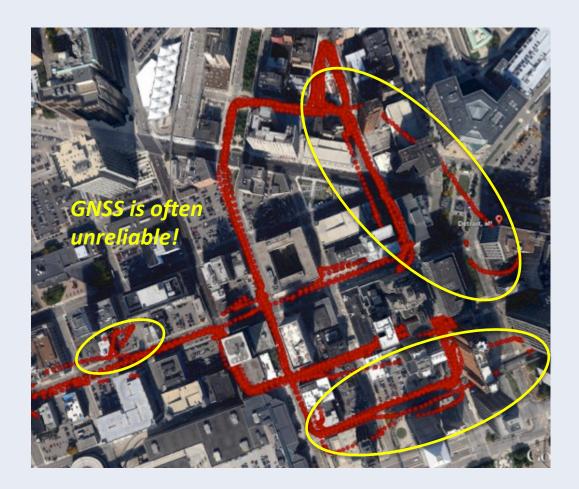
o Self-driving cars

Decimeter-level accuracy





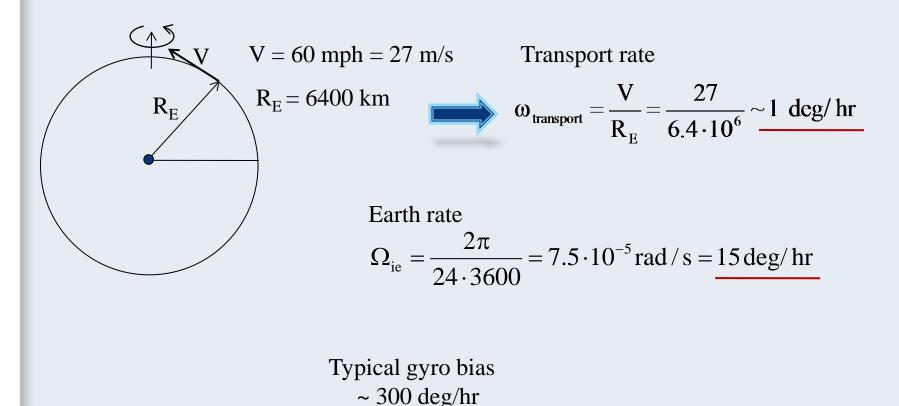
Operates in advisory mode


No direct visibility needed

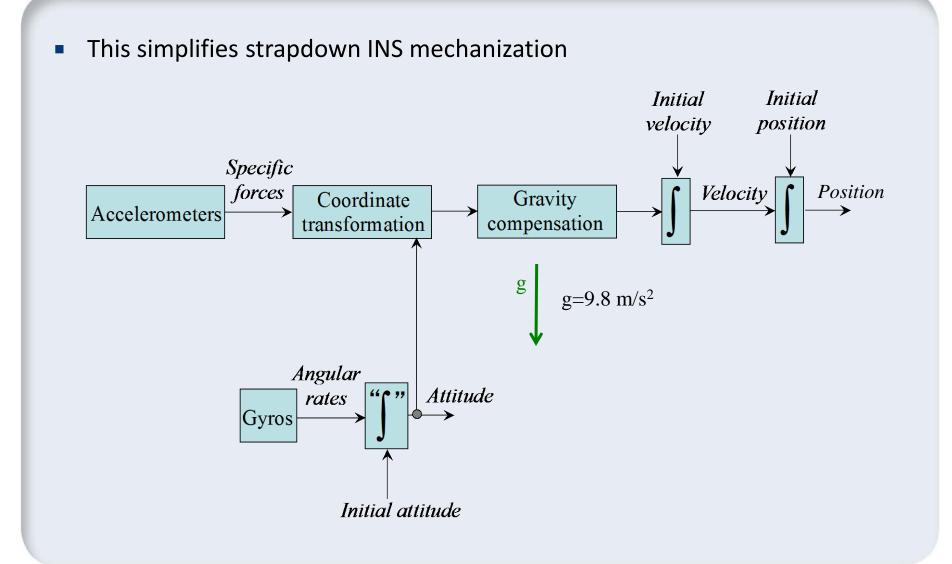
Preventing accidents using V2V **REQUIRES** lane level accuracy **... V2V ...** Next Gen Vehicle-to-Vehicle Communication

- GNSS is augmented with inertial sensors
- Consumer-grade inertial sensors must be used due to cost limitations
- Typical performance specs are:
 - 0.1 deg/s gyro drift (360 deg/hr)
 - 0.1 m/s² accelerometer bias

As compared to higher-grade inertials:


- Strapdown navigation mechanization is easier: non-inertial effects and high-precision gravitation models do not have to be included)
- **INS error model** is **easier**: high-order terms such as, for example, cross-axis sensitivity can be omitted
- The role of *aiding data* becomes much more *critical*

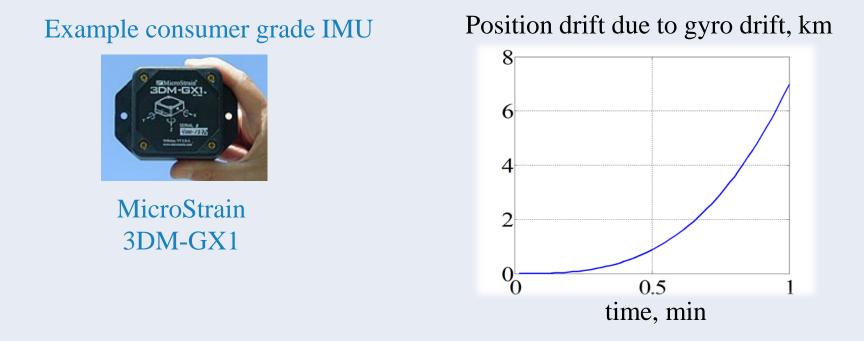
Navigation Mechanization for Low-grade Inertial


ffects and sophisticated gravity models do not have to be

InsideG

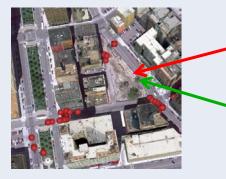
 Non-inertial effects and sophisticated gravity models do not have to be considered since they are below the level of sensor biases

- How to determine initial attitude?
- Traditionally, it is done based on gravitational acceleration and Earth rate
- However, low-cost gyros are not accurate enough to measure the Earth rate


Alternative alignment approach uses gravity and vehicle velocity

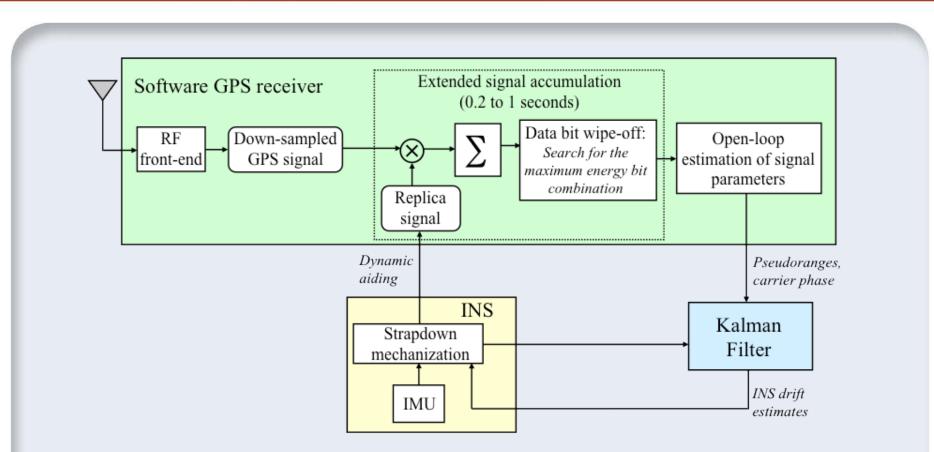
- Navigation-frame velocity: measured by GNSS;
- Body-frame velocity: assumed to be aligned with the front axis of the vehicle

Stand-alone operation of INS is extremely limited


• Efficient integration with other sensors (including GNSS) is critical

- Loose Integration: Fusion of *navigation solutions*
- **Tight Integration**: Fusion of *navigation measurements*
- **Deep Integration**: Integration at the signal processing level

Loose integration has limited capabilities in GNSS-challenged environments


Example: sparse GNSS position fixes in urban canyon

 No GNSS data for loose integration

Some data may be still available (e.g. 2-3 satellites) for tight and deep modes

<u>Tight and deep integration are more suitable for GNSS-challenged</u> <u>environments and integration of inertial with other sensors</u>

InsideGNSS

Key features:

- Sensor fusion at the signal processing level;
- Inertial aiding of GPS signal accumulation;
- Complete tracking status including tracking of the carrier phase

Benefits of Deep Integration

- Deep integration recovers weak (attenuated) GNSS signals thus increasing the number of GNSS measurements
- It is *beneficial* in environments such as under *dense tree coverage*

Example performance of deeply integrated GPS/INS under dense canopy

Entire trajectory

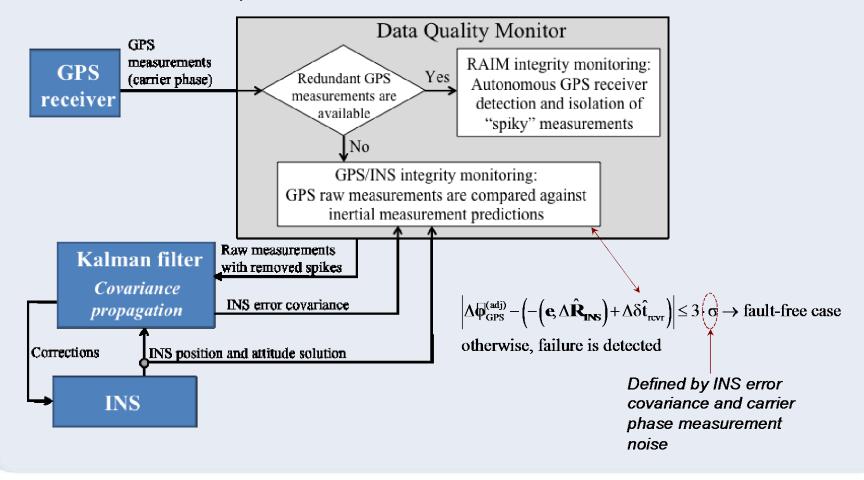
Zoom on dense forestry area: Example 1

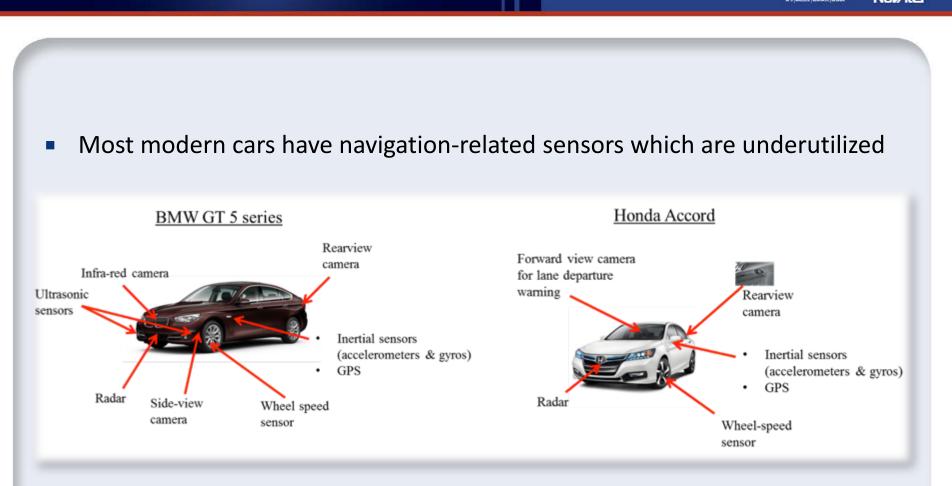
Zoom on dense forestry area: Example 2


 However, it is very challenging to fully recover GNSS signals attenuated by buildings in dense urban environments

Carrier phase vs. pseudoranges:

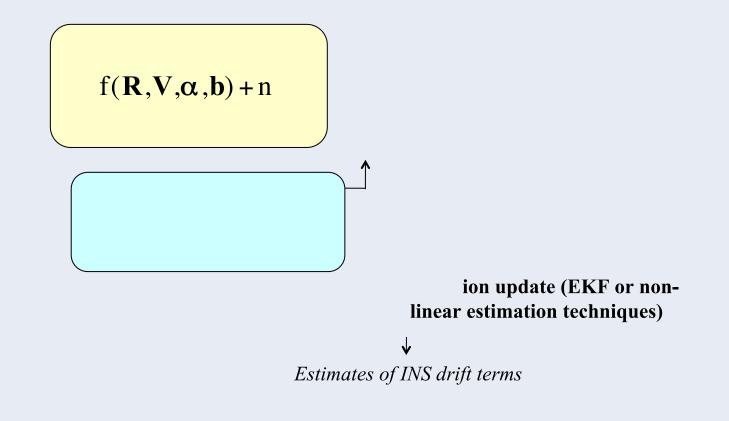
- Carrie phase provides two-to-three orders of magnitude noise reduction;
- This significantly shortens noise averaging interval;
- The use of carrier phase is especially beneficial for integration with low-grade INS:
 - ♦ Sensor errors change quicker than time intervals required to average pseudorange noise!




ging, especially when a limited number of SVs is available

GNSS observables

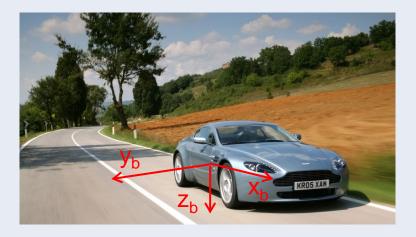
Implementation of measurement quality control is critical to mitigate the influence of multipath

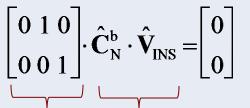


Inside

 These sensors can be applied to improve performance of GNSS/INS in GNSS-challenged environments such as urban canyons

- Generic integration approach
 - INS is a core sensor;
 - Other sensors provide aiding data for the inertial drift mitigation


Example Implementation of GNSS/INS


- GNSS: GPS+GLONASS
- Tight coupling (carrier phase measurements are used)
- INS error model consists of 18 states including:
 - Position errors (3)
 - <u>Position change errors</u> (3)
 - Velocity errors (3)
 - Attitude errors (3)
 - Gyro and accelerometer biases (6)
- Use of other sensors:
 - Motion constraints (zero lateral and vertical velocity components in the body frame)
 - Monocular video camera

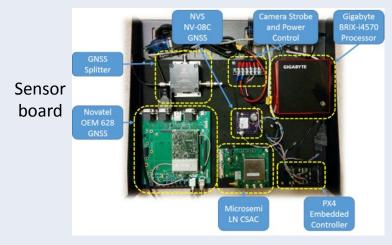
- o Zero cross-track velocity
- Zero vertical velocity

Motion constraints

Projection matrix (H) Coordinate transformation from navigation into body frame

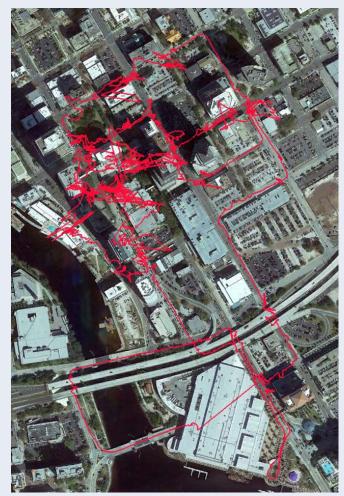
Linearization

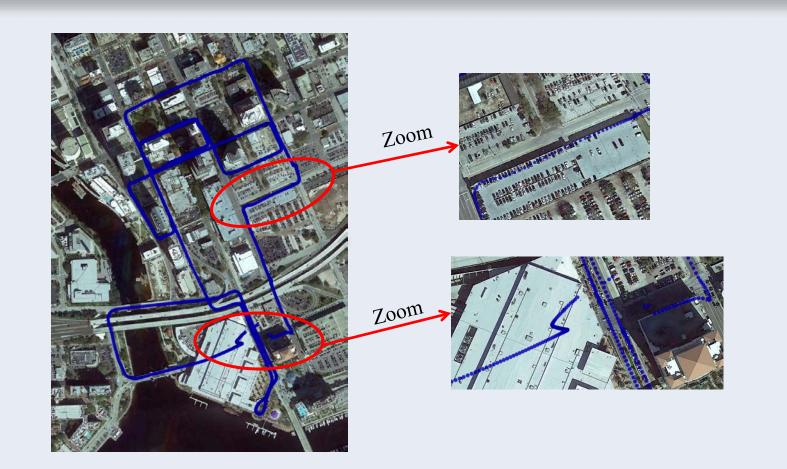
 $V_{y_b} = 0$ $V_{z_b} = 0$


 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \hat{\mathbf{C}}_{N}^{b} \cdot \delta \mathbf{V}_{INS} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \hat{\mathbf{C}}_{N}^{b} \cdot \mathbf{V}_{INS} \times \delta \boldsymbol{\theta}_{INS}$ Kalman filter measurement observable

Test vehicle

Vehicle mount


Downtown Tampa, FL



GNSS-only solution

Performance of GNSS/INS

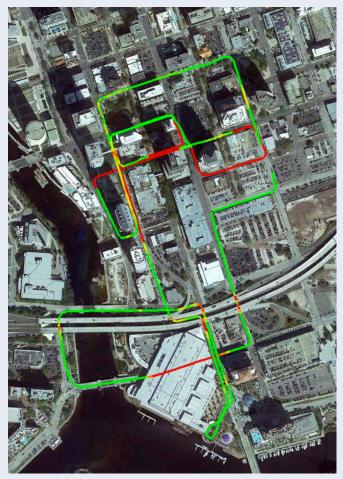
• Significant performance improvement as compared to GNSS

• However, *some problem areas* still *remain*

GNSS, INS, Vision and Motion Constraints

— Complete GNSS outage

Zoom



Lane-level positioning accuracy is maintained!

Stressing the system with artificial GNSS outages

— Complete GNSS outage

Lane-level positioning accuracy is still maintained!

Conclusion

- Integration with *low-cost inertial sensors* allows for *simplification* of *inertial navigation mechanization* and *error propagation model*;
- However, proper use of *aiding data* is *critical*;
- *Tight or deep integration* have to be used;
- Carrier phase measurements are most beneficial for mitigating the INS error growth;
- GNSS/Inertial generally does not support accurate positioning capabilities in challenging urban environments;
- Low-cost augmentation with other sensors enables accurate localization for all driving scenarios

- Visit <u>www.insidegnss.com/webinars</u> for a PDF of the presentations and a list of resources.
- Review the recorded version of today's webinar

Contact Info:

•Novatel-<u>www.novatel.com/</u> •Inside GNSS-<u>www.insidegnss.com</u>

Poll #3

Do you believe advanced technologies i.e. chip scale atomic clocks and cold atom systems will eliminate the need for GNSS ? (please select one)

- Yes
- *No*
- Probably
- Probably not
- Don't know

Ask the Experts – Part 2

Tom Jakel Senior Systems Engineer Honeywell Aerospace

Andrey Soloviev Principal QuNav

Sheena Dixon Product Manager NovAtel

Inside GNSS @ www.insidegnss.com/ www.novatel.com/